

Review of Last Class

- Defining electronic music: techniques + technology + concepts
- "Purely Electronic Music"/ Synthesized Music / ("Elektronische Musik")
- Analog vs. Digital
- "Electroacoustic Music" / ("Musique Concrète")
- Live vs. Fixed ("acousmatic")
- Listening to electroacoustic music

Racing Through, Racing Unseen (1996)

What sounds do you hear in this work?
What techniques does it seem were used to create these sounds (microphones, computer, instruments, etc.)?

Do these sounds evoke (a) location(s) or place(s)?
How is the work organized; how does it change over time?

SOUND \& SOUND

Sound refers to both what is perceived (a sensation) and to the stimulus that suggests the sensation (a physical phenomenon involving vibrations and energy)

Subjective \& Objective

Psychoacoustics \& Acoustics

Examining the Phenomenon of Sound

What is it physically?

How do we quantify or measure it?

How is it interpreted as sensations?
longitudinal waves of acoustical energy caused by air compression and rarefaction

Sound travels through a longitudinal wave in a medium (usually air).

Transverse Wave (perpendicular to medium)

Graphing a Periodic Sound Wave

Periodic vs Aperiodic

PSYCHOACOUSTICS

ACOUSTICS

Sinusoidal Waves

Sine wave: a circular/smooth oscillation
makes for a good oscillation (frequency) reference
pure sine waves are rarely found in nature

Reading a Periodic Waveform

Distance (sometimes time)

A has a greater amplitude than B

Amplitude

commonly measured in decibels (dB) - logarithmic units

Decibels

Decibels (dB) - logarithmic scale
Our perception of loudness is not linear, but exponential.

Logarithmic perception means that it takes more of a change in the amplitude to produce the same perceived change in loudness as the amplitude increases.

Amplitude

0 dB - silence
30 dB - whisper. all day long
60 dB - typical conversation. safe.
85 dB - bulldozer. permanent damage after 8 hours.
105 dB - headphones at max volume. chainsaw. hearing damage after 2 hours.
120 dB - the threshold of pain :(

Amplitude - inverse square law

sound intensity is inversely proportional to the square of the distance from the source

Frequency

rate at which the air pressure fluctuates is the frequency of the sound wave Cycles per second, Hertz (Hz)

Period \& Wavelength

FREQUENCY = 1/PERIOD | the longer the PERIOD, the lower the FREQUENCY*

Frequency number of cycles per second (f)
Period time it takes for one cycle to occur (T)
Wavelength distance travelled in one cycle ($\boldsymbol{\lambda}$) frequency is inversely related to period $\mathrm{f}=1 / \mathrm{T} \quad$ or $\quad T=1 / \mathrm{f}$
wavelength is equal to the speed of sound divided by the frequency

$$
\lambda=v / f
$$

$\mathbf{v}=$ the speed of sound is constant, $\sim 1,125$ feet per second (one mile in 5 seconds)

Frequency Limbo

How high can you go?

LISTEN: Hearing range 20 Hz to $20,000 \mathrm{~Hz}$ ($0-20 \mathrm{~Hz}$ frequencies are infrasonic)

Frequency Ranges (fundamental)

	Low (Hz)	High (Hz)
Piano	27.5	4186
Speech	80	500
Standard Digital Audio	0	22,050
Human hearing	20	20,000
Dog hearing	20	45,000
Seal hearing	1000	123,000

Frequency \& Pitch

We experience pitch logarithmically as well

Octave - 2:1 frequency ratio

Frequency

The interval between two notes can be measured by the ratio of their frequencies. (just intonation)

1:1 (unison)
2:1 (octave)
3:2 (perfect fifth)
4:3 (perfect fourth)
5:4 (major third)
6:5 (minor third)

Equal Loudness Contours

(Fletcher-Munson Curves)

Physical (Acoustics)	Perceptual (psychoacoustics)	Units
amplitude	loudness	decibels (dB)
frequency	pitch	hertz (Hz)
duration	time	seconds (s)
timbre	quality / tone / spectral content	

同

IN PHASE (0° out of phase)

SOMEWHAT OUT OF PHASE (20° out of phase)

TOTALLY OUT OF PHASE/CANCELLING (180° out of phase)

2/24 Sound Terminology Review, Acoustics I SLIDES

HW: Read Introduction to Acoustics: Waves and Sound (disregard the mathematics!)

Watch this short video on how the ear works (disregard technical names, just understand the system as a whole)

Listen to "Dripsody" by Hugh LeCaine and "One Minute" by Ryoji Ikeda

How do these pieces activate the ears? What techniques does it seem were used to create these sounds (microphones, computer, instruments, etc.)? How is the work organized; how does it change over time (or how is it structured)?

